
NLP Coursework

Tianyu Dai, Xuqi Liu and Zhongwei Shi
Department of Computing
Imperial College London

United Kingdom
{td20, xl3020, zs520}@ic.ac.uk

Abstract

This report describes our regression model for
Task 1: Predict the score for how funny the
edited headline is. Here we present two meth-
ods (with/without pre-trained models) to ad-
dress this task. In approach 1, we utilize
a multitude of the state-of-the-art text pre-
processing frameworks to exploit the dataset.
Our term proposes two pre-trained models:
one adapts the Bidirectional LSTM (BiLSTM)
in a recurrent neural network, and the other
employs the Bidirectional Encoder Represen-
tations from Transformers (BERT). In ap-
proach 2, we first utilize the word2vec and fea-
ture extraction algorithm to learn word associ-
ations from a large corpus of text, then experi-
ment various regression models with different
hyperparameters to optimizer the test results.
In summary, the BERT outperforms the BiL-
STM in approach 1, whilst word2vec performs
better than the feature extraction algorithm in
approach 2.

1 Introduction

This report is organized in the following way: Sec-
tion 2 and 3 will walk you through the imple-
mentation details of two approaches, including the
architecture of models and all text preprocessing
techniques we used. Section 4 describes our per-
formance obtained for the blind test set. Section 5
concludes with some discussion on the test results.

Our source code is available online on Google
Colab via this link.

2 Approach 1

In this section, we describe the details of our pre-
trained neural network model. The implementa-
tion is built upon the baseline with quite a few
modifications. Our term proposes two pre-trained
models: one adapts the bidirectional LSTM (BiL-
STM) in a recurrent neural network, and the other

employs the Bidirectional Encoder Representa-
tions from Transformers (BERT).

2.1 BiLSTM

2.1.1 Data Preprocessing
We utilize a multitude of text preprocessing tech-
niques to exploit the dataset. First, as our task
is to predict how funny the edited headlines are,
we change the original sentences by edit words
to make the training sensible. Next, we adopt a
spaCy tokenizer to break the raw text into words.
We choose spaCy because it provides strong flex-
ibility to specify special tokens that need (or not)
be segmented by using special rules. To keep the
consistency of our vocabulary, we use a Word-
NetLemmatizer to group together the inflected
forms of a word so that they can be analysed as a
single token. After that, we remove all stop words
(as defined in the nltk package) to extract only
useful tokens. Furthermore, as we use the GloVe
model to learn token representations, we remove
all words containing non-word characters or URLs
and lowercase the rest to maximize the coverage of
GloVe on the vocabulary.

Our text preprocessing turns out to be quite suc-
cessful that a coverage rate of 98.2% (9,676 out
of 9,857) is obtained, over 45.2% (8,735 out of
12,924) better than the baseline.

Our proposed model is printed in the Appendix
A. Compared to the baseline, we employ two more
layers in the network: a batch normalization layer
and an activation layer. Next, we describe each
layer elaborately.

2.1.2 Layers
Embedding Layer The embedding layer is in-
herited from the baseline. We use the pre-trained
GloVe model in this layer to learn an embedding
for most of the words in the training dataset (see
the coverage rate above). We define it as the

https://colab.research.google.com/drive/1txIcMowqN2jPtxkgarsq-wlRGF8CqysF?usp=sharing


first hidden layer because we can obtain the high-
quality distributed vector representations of head-
lines, getting ready for deep training.

BiLSTM Layer The BiLSTM layer is inherited
from the baseline. It is ”bidirectional” version
of the LSTM, i.e. it combines the forward hid-
den layer with the backward hidden layer, preserv-
ing both history and future context. With broader
knowledge of word representation, the BiLSTM
has a proven ability to capture the semantics of the
sentence.

Batch Normalization Layer After the BiLSTM
layer, we push each mini-batch into a batch nor-
malization layer for data standardisation. With the
change, the non-linear activation of the BiLSTM
is eliminated so that we can stabilize the learn-
ing process and dramatically reduce the number
of training epochs required to train deep networks.

Linear Layer with ReLU activation Finally,
as this is a regression model, we use a fully-
connected layer to map the normalized data from
hidden state space to tag space. Moreover, as the
funnest is defined by a number in the range [0, 3],
we apply an additional ReLU activation to produce
non-negative real outputs.

2.1.3 Model Configuration

After a comprehensive hyperparameter search, we
find that the model trained with an Adam opti-
mizer with the learning rate of 5e-4, the hidden
dimension of 50, and the batch size of 128 is more
likely to outperform the rest. For this regression
task, we choose the mean square error as the loss
function and train our model for 20 epochs.

Dealing with over-fitting The baseline reveals a
severely overfitted model. Even after epoch 1, the
validation loss starts increasing, whilst the train-
ing loss keeps decreasing. We try various ways to
alleviate this issue:

1. Since the training dataset is quite small, i.e.
only 80% of 10,000 headlines is used for
training, we merge the funLines dataset to al-
low the model to train with more data.

2. We add a dropout layer with the probability
of 0.2 in the BiLSTM model to introduce the
regularization term during the training.

3. We incorporate the idea of early stopping
to stop the training when the validation loss
starts increasing.

With the change, we successfully postpone
the occurrence of overfitting, enabling the
model to converge after training for sufficent
number of epochs.

2.2 BERT
2.2.1 Data Preprocessing
For BERT, similarly, we first change the original
headlines with the edit words. However, we retain
the entire feature space without pre-processing
any punctuation, stemming, lemmatisation, stop
words, and etc., because we find that sometimes,
these text pre-processing techniques may change
the meaning of the original headlines, and in prac-
tice, word choice is really important to the fun-
niness of the sentence. Instead, as BERT has
tremendous vocabulary, we can learn from those
word representations.

2.2.2 Bert Tokeniser
We have tried two methods to get token. One is to
concatenate original headlines and new headlines
(see Figure 1), and the other is to concatenate new
headlines and new words (Figure 2).

[CLS] Original Headline [SEP] [PAD]New Headline [SEP]

Figure 1: concatenating original headlines and new
headlines

[CLS] New Headline [SEP] [PAD]New Word [SEP]

Figure 2: concatenating new headlines and new words

In the first approach, we assume that the de-
gree of funniness depends on the relevance of the
new and old sentences, i.e. a standalone headline
may not be interesting, but it will be funny when it
combines with the other one. However, the second
approach relies on the assumption that the edited
headline is funny because the edit word plays an
important role in the new sentence.

We benchmark both tokenisers and find the for-
mer works better. Speaking of the model, we be-
lieve the capitalization has minimal effect on the



funniness of the headlines. Therefore, we low-
ercase all words and utilize the bert-base-uncased
pre-trained model.

2.2.3 Optimizer & Learning Rate Schedule
In order to obtain a steady learning process, we
train our model with an AdamW optimizer with
a linear warmup learning rate schedule. Here we
adopts the mean square error as the loss function
as well.

This design choice is made because the learning
rate in the AdamW optimizer is really sensitive to
the final outcome. After a careful hyperparame-
ter search, we finally set it to 3e-5. The use of
linear warmup scheduler reduces volatility in the
early stages of training. The model can start with
small learning rate to stabilize the training. Then,
the linearly increasing learning rate can help the
model converge faster.

For the choice of epoch, we have tried many
times. Although the original paper suggests 2-4
epochs, we find that the model easily starts over-
fitting after epoch 1. According to the RMSE of
the validation set, we select 1 to make the model
better.

3 Approach 2

In this section, we introduce an approach with-
out pre-trained representation. We try to address
this task from two aspects: first, find the word-
embedding; second, use appropriate methods to
train these word vectors to solve this regression
task. The implementation is developed upon the
baseline and can be divided into three steps: data
pre-processing, constructing feature vectors, and
regression.

3.1 Data Preprocessing
Similar to what we did in the first task, we re-
place the original words by the edit words. In this
approach, to pre-process the data, we remove all
the punctuation in the headlines, replace abbrevia-
tions, remove all the nonalphabetic symbols using
regular expression and also use lowercase except
for the initials and proprietary nouns. In the ex-
periments, we also tried stemming and lemmatisa-
tion, but they are not bring positive improvement
to the results. So, we do not apply them in the final
implementation.

Then, to make the processed sentences can be
used as the input of the training, we do tokeni-
sation. We use SpaCy tokeniser to remove all

the stop words and convert text into word lists.
We also combines entities into a single token (e.g.
weeks ago) to make them more meaningful.

3.2 Building Word Vectors

To convert the words to the vectors, we do exper-
iments with two types of techniques, the first one
is the feature extraction algorithms and the second
one is the word2vec algorithm.

3.2.1 Feature Extraction algorithms
To do the feature extraction to the corpus, we first
convert all the edit words to a matrix of token fre-
quencies. There are two choices for the input data,
the edit words and the edited sentences. There are
several ways to extract features. For example, use
the token counts to obtain the features representa-
tions by using TF-IDF algorithm. Also, decom-
position means such as truncated SVD (aka LSA)
and sparse PCA can be used to further find the la-
tent features.

Since we do not know which algorithm can find
the most useful features, we try each of them and
put different features to the regression model to
find the suitable one. Also, we combine the dif-
ferent features together use FeatureUnion as
the input for regression and see if multiple features
can bring better results.

After doing experiments, it is shown that when
the edit words are the input, use the combined fea-
tures extracted by TF-IDF and truncated SVD as
input to the ridge regression outputs the best fit,
which given a training RMSE of 0.41 and a valida-
tion RSME loss of 0.57. In the meantime, it is not
surprised that this method performs not well on
the testing set because it only uses the edit words.
So, more attempts are done and described in the
following part.

3.2.2 Word2Vec
Apart from finding the latent feature represen-
tations of the corpus, obtain the word vectors
by neural network training based on the train-
ing dataset is also implementable and more
common and useful in practice. Word2Vec
is a common way of converting the corpus to
vectors by learning the word associations using
neural network. It has two model architectures
which are continuous bag-of-words (CBOW) and
continuous skip-gram, and we implement both to
find the best suitable one. The word2Vec model
we used is provided by the Gensim package, i.e.



gensim.models.word2vec.Word2Vec().
It takes the processed sentence tokens as input
and output a model with all words and its vectors.

The input dataset can be the sentences with edit
words, the edit words and the original words. In
order to obtain the word vectors that can make the
task result very well, a lot of time is taken on fine-
tuning the hyper-parameters, including the vector
size, the window size, min count size, model type
(CBOW or skip-gram) and so on. After doing ex-
periments, the best combination of model hyper-
parameters is using CBOW model with 20 for vec-
tor size, 10 for window size, and 4 for min count
size.

Overall, the word vectors that given the best
prediction results are obtained by first train the
word2Vec model with all edited and pre-processed
headlines, and then concatenate the average vec-
tors of the headlines, the vector of the edited word,
and the original word as the feature vectors.

3.3 Regression

After getting the word vectors, we need to do the
regression to make the prediction of the score.
We try several regression models provided by the
scikit-learn package. The LinearRegression
is just the naive approach of doing linear regres-
sion and the Ridge model uses L2 regularisation
which can better help do multi-variate regression.
The parameters of these models are tuned. The pa-
rameters that they output the best performance in
this task are: for the LinearRegression, we
set the normalize to be True, and for the Ridge
regression, we set the alpha value equals to 0.1,
the tol to 1 and the normalize as True.

For the final results, using the obtained word
vectors described in the previous part as input to
the LinearRegressionmodel and the Ridge
model, the previous model has a RMSE error of
0.572 for validation and 0.567 for testing, and the
latter model output has a RMSE error of 0.570
for validation and 0.565 for testing. Therefore the
Ridge regression performs slightly better than the
Linear regression.

4 Performance

In this section, we utilize the blind test set to evalu-
ate the performance of the BERT (approach 1) and
word2vec+Ridge Regression (approach 2) model.
They are elected because they have better perfor-
mance than the others. To compare our results

with the leaderboard, we also calculate the root
mean square error (RMSE) of our model. The test
results of both approaches are summarized in Ta-
ble 1, where RMSE@N means RMSE by taking
the N% most funny headlines and N% least funny
headlines in the test set, for N ∈ {10, 20, 30, 40}.

Table 1: performance in two approaches

RMSE RMSE@10 RMSE@20
1 0.530 0.846 0.723
2 0.565 0.957 0.809

RMSE@30 RMSE@40
1 0.640 0.578
2 0.705 0.627

5 Discussion

From Table 1, we can observe that the RMSE of
both models decrease with respect to greater N ,
and the overall RMSE (of which N is maximized)
is the lowest. This implies our models have the
proven ability to accurately predict the funniness
score in almost all general cases. However, when
it comes to extreme cases where the edited head-
line are among those most or least funny set, our
model can still classify whether it is funny or not,
but fail to give a accurate score. The test results
are satisfying - our BERT model ranks 13th on co-
dalab for task 1 at the time of writing this report,
and it outperforms the models of other participants
in both general and extreme cases.

Nevertheless, we evaluate the BiLSTM model
in approach 1 by the test set. The lowest RMSE
obtained is 0.58. Though it cannot compete with
BERT, it dramatically alleviates the occurrence of
overfitting. Recall that our BERT has a severe
tendency to overfit, a possible improvement is to
combine BERT and BiLSTM together, allowing
the model to train for sufficient number of epochs.
We can also incorporate the Conditional Random
Field (CRF) model for structured prediction.

For approach 2, our experiments prove that us-
ing the neural network approach (word2Vec) for
obtaining word vectors can perform more robustly
than using feature extraction algorithms. It may
be because the vectors obtained from training are
more case-dependent. Due to the limited time,
numbers of regression models have not been fully
explored. Actually, we also try to use BiLSTM for
regression in approach but no outstanding perfor-
mance so far in hyper-parameter searching.



6 Appendix

6.1 Colab link
https://colab.research.google.com/drive/1txIcMowqN2jPtxkgarsq-wlRGF8CqysF?usp=sharing

6.2 BiLSTM Structure

BiLSTM(
(embedding): Embedding(9554, 100,

padding_idx=0)
(lstm): LSTM(100, 50, dropout=0.2,

bidirectional=True)
(bn): BatchNorm1d(100, eps=1e-05,

momentum=0.1, affine=True,
track_running_stats=True)

(hidden2label):
Linear(in_features=100,
out_features=1, bias=True)

(activation): ReLU(inplace=True)
)


