Student ID: td20

		M	ark Scheme		_	
Section	Ougation	Mork Prookdown	Marks	Maykey Comments	Ougation Statement	
1 - VAE	Question 1.1a	Mark Breakdown Module - Layers - MLP Module - Layers - CNN (subsume mlp) Module - Layers - BatchNorm / Dropout etc. Module - Encode - Basics Module - Encode - LogVar instead of Var Module - Reparam - Correctly Sampling Module - Forward HypParam - Sensible (beta in next part) Qualitative	6 6 3 3 1 1 3 3 1 1 1 1 2 2 2 2 2 2	Less satisfactory function naming style in the VAE construction code (e.g. without looking at self.decode(), unclear what the intended functionality is for self.fcld1)	Implement a VAE - fill the blanks of nn.Module class + specify sensible hyp.param	
	1.1b	Loss with Reco and correct KL Loss with correct Reco and beta Discussion of reco term - need to mention rescaling inputs/outputs appropriately	0 1 1 1	The code returns the KL term as beta * KL instead of KL itself. This also explains the KL loss plot in 1.2a. Changing beta alone is not the only reason for encouraging disentanglement need to assume factorised prior.	Choose a suitable loss and describe your choice of RECO term	
	1.2a	Plots showing train and test lost terms		strictly speaking the KL loss plots were plotting beta * KL	Results - Plot losses, investigate effect of beta	
	1.2b	Reconstructions of test set images and a few samples Each bullet point addressed Qualitative	1 1 1 3	no description on how poster collapse affects the reconstructed/generated samples. Also it is not the case that as beta increases, generation quality will become better (consider beta goes to inifinity).	Show reconstructions of test set, and samples Discuss (inc. posterior collapse), visulize reconstructions	
	1.3a	Explain presence / absence of clusters Explain effect of KL and Beta on Disentangling clusters Explain outliers / boundaries between clusters Reflect on reliability of conclusions from T-SNE; second mark for additional plots	2	How the box plot supported the outlier analysis is unclear. No explanation on the changes of T-SNE when beta changes. Also your explanation implies T-SNE is sensitive to hyper-parameter selection (so this is reliable?).	Perform T-SNE on learned representations. Discuss the results - effects of beta, clustering, outliers, boundaries, relability of T-SNE	
	1.3b	Perform at least one interpolation Discuss obervation from interpolation Relate interpolation to T-SNE	2 2 1 1 0 1	Refer to your T-SNE plot and discuss the path from cluster 1 to cluster 6: what's in between and how does that explain the interpolation results?	Interpolate between classes in latent space. Discuss: qualitative character of interp, relevance to T-SNE plot	Part Total 40 /50
	2.1a	HypParam - Sensible Module - Generator-constructor + forward Module - Discriminator-constructor + forward	2 2 3 3 3 3		Implement a GAN starting with the DCGAN architecture.	
	2.1b	Train - Discriminator Train - Generator	5 6 5 6	Could have tried tricks such as data augmentation.		
	2.1c	note: please feel free to interpolate scores	10 10		Visualise the generated images	See Ref Samples
	2.1d	Detail 3 engineering features introduced. e.g. batchnorm, label smoothing, ReLU, #layers Qualitative	3 6	Explained tricks and highlighted tricks (e.g. label flipping) that were most helpful. No discussion on why any of those tricks are useful.	Discuss your final architecture along with the experiments which led to it.	
		G and D loss plot - remove mark if no legend	1 1	As your GAN loss contains the real/fake classification and image class	io ii.	

2 - GAN	2.2	Comparision between plots and theoretical optimum/zero sum game	2	4	label prediction, which part of the loss was dominating? how does that reflect the easy training of the generator at the begining?	Plot the generator and discriminator loss curves - discuss whether sensible/expected		
	2.3	Qualitative. note: If the students states that mode collapse was not a problem check the generated images to make sure that this is the case. If mode collapse was an issue yet nothiing was done to combat it remove 2 marks	4	4	ACGAN is a good trick to encourge generation of images in different classes, but within the same class mode collapse can still happen.	Provide a discussion on whether you noticed any mode collapse, what this behaviour may have been attributed to and explain what you did in order to combat it if it was a problem. If you didn't experience mode collapse still detail methods to combat it.	Part Total	43 /50
	Penalty Marks	Transformations etc. not provided below		-1				
		Models do not load properly Model provided is poor compared to claimed results (VAE and GAN)		-1 -1 -1				
Student ID:	td20	GAN Exceeds maximum parameter count		-1			CW Total	83 /100